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RECLAMATION'S MISSION

The mission of the Bureau of Reclamation is to manage, develop, amd protect water and related
resources ia an environmentally and economically sound manner in the interest
of the American public.

DEPARTMENT OF THE INTERIOR'S MISSION

As the Nation's principal conservation agency, the Department of the Interior has
responsibility for most of oar nationally-owned public tends and natural resources. This
includes fostering wise use of our land and water resources; protecting our fish, wildlife, and
biological diversity; preserving the environmental and cultural values of our national parks
and historical places; and providing for the enjoyment of life through outdoor recreation.
The Department assesses our energy and mineral resources and works to ensure that their
development is in the beet interests of all our people by encouraging stewardship and citizen
participation in their care. The Department abo has a major responsibility for American
Indian reservation communities and for people who live in island territories under U.S.
Administration.
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This is a review draft of a manuscript which is being submitted to the International Journal of

Lake and Reservoir Management for publication in either the June or August edition. You are

being sent this copy in order to both inform you of the existence of this report of our scientific

investigations, and to provide an opportunity for technical review.

Your suggestions and corrections will be accepted until March 1, 1997. Send them to one of the

following:

Dr. James F. LaBounty or Dr. Michael J. Horn

Bureau of Reclamation (D8220)

P.O. Box 25007

Denver, CO 80225-0007

or E-mail address: jlabounty@do.usbr.gov

Our fax number is (303) 236-6008



THE INFLUENCE OF WASTEWATER DRAINAGE FROM

THE LAS VEGAS VALLEY ON THE LIMNOLOGY OF BOULDER BASIN,

LAKE MEAD, NEVADA-ARIZONA

James F. LaBounty and Michael J. Horn

U.S. Bureau of Reclamation, Ecological Research and Investigations Group (D-8220)

P.O. Box 25007, Denver, CO USA 80225.

ABSTRACT

Lake Mead, Colorado River, Arizona-Nevada, is one of the most heavily used reservoirs

in the western United States, providing abundant recreational opportunities as well as

downstream domestic and agricultural water for over 22 million users. Based on average

nutrient levels and productivity, Lake Mead is classified as mildly mesotrophic. The interflow of

the Colorado River dominates the limnology of much of the 106 km-long reservoir, and may still

be identified at Hoover Dam under certain conditions. The lower basin of Lake Mead ending at

Hoover Dam is known as Boulder Basin and is near the Las Vegas metropolitan area. Las Vegas

Bay, which comprises the northwestern portion of Boulder Basin,receives all runoff including

secondary and tertiary treated municipal sewage effluent from the Las Vegas Valley via Las

Vegas Wash. The rapidly increasing population size of the Las Vegas Valley, and subsequent

increases in inputs of point and non-point sources to Las Vegas Wash, has resulted in an

increasing rate of eutrophication in Las Vegas Bay. Due to abundant nutrients, chlorophyll a

concentrations during the months of June and July often exceed 100 mg-rn"3, while secchi depth
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decreases to less than 0.5 m. Within the first 4 km of Las Vegas Bay, extending away from the

wash inflow, recovery from nutrient enrichment is dramatic. Secchi readings increase by over

5 m and chlorophyll a concentrations decrease by more than 90 percent. However, the influence

of the density current plume from Las Vegas Wash, which is easily identified by its relatively

high specific conductance and turbidity, can be observed to extend into Boulder Basin, and at

times to Hoover Dam. The thickness, the distance to which it extends into the reservoir, and

depth of the plume depend on the season of the year and corresponds to the degree of thermal

stratification within the reservoir. Although not directly measured, limnological data suggest the

potential for this plume to be entrained by municipal water intakes located at Saddle Island near

the mouth of Las Vegas Bay. Outbreaks of cryptosporidiosis in Las Vegas have been shown to

be associated with time periods when the plume was observed near the same depth as the intakes.

Additionally, concentrations of bacteria and organic compounds are higher in the plume relative

to the surrounding water.

INTRODUCTION

Lake Mead is a large mainstream Colorado River reservoir in the Mohave Desert,

Arizona-Nevada (Fig. 1). Its lower end is 15 km east of Las Vegas, Nevada. Lake Mead, formed

in 1935 following construction of Hoover Dam, is the largest reservoir in the United States by

volume (36.7 x 109 m3), and is second only to Lake Powell in terms of surface area (660 km2)

(Lara and Sanders 1970). At full pool (reservoir elevation 374 m above mean sea level (msl),

Lake Mead extends 106 km from Black Canyon (Hoover Dam) to Pearce Ferry. Its greatest

width is 15 km, and the highly irregular shoreline is 885 km in length. Lake Mead has four large
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sub-basins: Boulder, Virgin, Temple, and Gregg. Between these Basins are four narrow

canyons: Black, Boulder, Virgin, and Iceberg (Fig. 1).

Retention time in the reservoir is on average 3.9 years, depending on release and inflow

patterns. The Colorado River contributes about 98 percent of the annual flow to Lake Mead; the

remaining three inflows, the Virgin and Muddy Rivers and Las Vegas Wash, provide the

remainder. Annual inflow via Las Vegas Wash was about 1.9 x 108 m3 in 1995-96, providing

the second highest volume of annual inflow to Lake Mead. Discharge from Hoover Dam is

hypolimentic and occurs 83 m below the maximum operating level of 364 msl. Annual

discharge is approximately 9 x 109 m3. Annual withdrawal through the Southern Nevada Water

System in Boulder Basin is presently about 0.55 x 109 m3 (Roefer et al. 1996).

Overall, Lake Mead is mildly mesotrophic based upon several classification indices

(Vollenweider 1970, Carlson 1977). As with other reservoirs, operations exert great influence on

the water quality and ecology of the system (Thornton 1990). Unfortunately, the hydrodynamics

of such large reservoirs are complex and not well understood. Each Basin within Lake Mead is

ecologically unique, and therefore responds differently to the inflow outflow regime.

Furthermore, the different sources of water entering Lake Mead, as in other reservoirs, often

retain their identity and influence for substantial distances into the reservoir and do not

necessarily mix completely with the rest of the water column (Ford 1990). This can lead to

substantial underestimates of water retention time, transport rates, and fate of materials

transported into the reservoir.

Boulder Basin is the most downstream Basin, and collects the combined flows from the

reservoir's two main arms (Fig. 1). Additionally, it receives all drainage from the Las Vegas
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Valley via Las Vegas Wash into Las Vegas Bay. This drainage includes both non-point surface

^ and groundwater discharges, and treated effluent from all Clark County and municipal treatment

facilities. Boulder Basin is about 15 km wide from Boulder Canyon to Hoover Dam (Black

Canyon), and it is about 18 km from the confluence of Las Vegas Wash to Hoover Dam. The

historical Colorado River channel lies along the eastern side of the Basin.

The morphology and hydrodynamics of Lake Mead are such that the nutrient loading,

which continues to steadily increase due to increasing wastewater discharge through Las Vegas
f-'.^-

Wash, is confined to Boulder Basin (Paulson and Baker 1981, Prentki and Paulson 1983). This

situation is unusual for a reservoir since it is a reversal of the normal upstream to downstream

decrease in the pattern of productivity (Kimmel et al. 1990). As a result of abundant nutrient

input into Las Vegas Bay, it was not uncommon to measure chlorophyll a concentrations greater

than 100 mg-m"3, and to have secchi readings less than 0.5 m in the inner Bay (J. LaBounty,

_ unpublished data). Highest measured chlorophyll a concentrations in the inner Bay of

330 mg-m"3 in August 1993 (blue-green algae bloom), and 397 mg-m"3 in December 1996

(cryptophyte algae bloom). Recovery from nutrient enrichment in the photic zone is rapid. '

Within the first 4 km from the wash inflow, secchi transparency increases over 5 m and there is a

90 percent reduction in the amount of chlorophyll a (J. LaBounty, unpublished data).

The results reported here are part of the present ongoing investigations of the limnology

""" of Boulder Basin which began in mid-1990. The principal objective of this paper is to provide a

seasonal description of the flow of water from Las Vegas Wash as it moves into Las Vegas Bay
<**''"

1 and Boulder Basin, and to discuss these findings relative to the municipal water supply of the Las
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Vegas Valley which is withdrawn from Boulder Basin at Saddle Island just south of the mouth of

Las Vegas Bay at Saddle Island.

METHODS AND MATERIALS

Limnological sampling was done at a series of 10 sites (LVOlrLVl?) in a linear transect from the

Las Vegas Wash inflow (LV01) to the immediate forebay of Hoover Dam (LV17) (Fig. 1). All

sites were located at the deepest point of the historical stream channel as initially determined

with a depth finder. Sites were sampled a minimum of once monthly, October through April,

and twice monthly, May through September. At each site, the limnological profile included

measurement from surface to bottom for temperature, dissolved oxygen, pH, specific

conductance, and turbidity. Data were collected at 1 m intervals at least through the thermocline,

then 2-5 m thereafter depending on uniformity of the water column. Profile data were collected

using an H20 Sonde unit connected to a Surveyor 3 data recorder (Hydrolab Corporation ®).

Samples for analysis of nitrate, ammonia, and ortho-phosphate were collected from four depths

at each site at the surface, 1 m, 3 m, and from the depth of the Las Vegas Wash plume as

indicated by the highest specific conductance reading, which varied with the depth of the plume.

Sample analyses were performed by the Bureau of Reclamation Soil and Water Analysis

Laboratory in Boulder City, Nevada, and followed that of Standard Methods for the Examination

of Water and Wastewater (APHA 1992). All sampling was completed between the hours of 0800

and 1300 in a sequence beginning at LV01 and ending at LV17. Additionally, one complete set

of profile data were collected for a series of sites along the Colorado River channel from Grand

Wash at the upper end of Lake Mead to Hoover Dam, to illustrate patterns of interflow generated



by the Colorado River. Processing of data and development of graphical presentations was done

using both Quattro Pro 7 (Corel ®) and Surfer (Golden Software ®) software packages.

RESULTS

Las Vegas Wash Inflow

SEASONAL DYNAMICS

The fate of water entering Las Vegas Bay can be tracked both by its high conductivity

signature, or in a similar manner because of its higher turbidity relative to the main body of

Boulder Basin (Fig. 2). This study focused on conductivity because of its reliability and ease of

measurement. Beginning in January, water flowing into the Bay from Las Vegas Wash is warmer

than that of the inner Las Vegas Bay (20 °C vs. 14 °C) (Roline and Sartoris 1996). Also,

conductivity is much higher in the Wash than in the lake (2500 wS-cnr2 vs. 1000 wS-cnr2). There

is some mixing in the inner Bay as indicated by its higher overall conductivity versus that of the

outer Bay. However, the plume retains its identity as an underflow for about 4 km into Boulder

Basin in January (Fig. 3a). This underflow follows the thalweg of the historical stream channel

of Las Vegas Creek (now referred to as Las Vegas Wash) until an equilibrium depth is reached

below, which lake water, due to cooler temperatures, is denser than plume water. This occurs at

a depth of 40 to 60 m in late winter. At this lake depth, the plume then continues into the Basin

as interflow, being supported by the denser water of the hypolimm'on until it has dispersed and

mixed to the point it can no-longer be detected by our standard measurements.

In early spring, the plume elevates into the water column existing as an underflow for a

shorter and shorter distance before becoming interflow (Fig. 3 a-f). This change is a function of

both stratification developing in the reservoir and the warming of inflowing water from Las
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Vegas Wash. Conductivity remains relatively stable throughout the year, however, the inflow

water temperatures increase from 20° to nearly 28 °C by mid-summer (Roline and Sartoris 1996).

Although Las Vegas Wash water is wanner then lake water, it still tends to underflow due to its

higher density caused by salinity. In both late spring and early fall, water temperature of the

plume may be 1-2°C higher than that of surface waters for a distance of 2-3 km (Figs. 3b,f

temperature profiles). By early summer, the plume is located at its shallowest depth of the year

as a result of increasing temperature of the inflow and the relatively shallow thermocline in the

Bay. As the thermocline strengthens, the plume flow is tightly bound to the thermocline. It is

constrained from below by denser cold water, and from above by the less dense warm surface

waters. Conductivity gradients identifying the plume are sharpest at this time. Depending on

conditions, this plume may exist intact for 8 to 10 km from the inflow of Las Vegas Wash, and

on occasion can be identified nearly to Hoover Dam. By late summer, the plume again begins to

sink as the thermocline deepens and the inflowing water cools. Again, even though inflowing

water is warmer than the water in Las Vegas Bay, it still sinks due to its higher conductivity.

This is most easily observed in November when the warmest water is located at the bottom.

Table 1 summarizes the general seasonal position and extent of the plume based on data from

1991-1996.

Dissolved oxygen and pH profiles are both strongly influenced by stratification and

temperature (Fig. 3 a-f). Shifts in pH tend to closely mimic those of dissolved oxygen. Dissolved

oxygen levels decrease in the hypolimnion as stratification increases and mixing is reduced.

Oxygen depletion in the hypolimnion occurs over the course of the summer, and is greatest

during the months of August and September. Depletion is greatest in the inner Bay with
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dissolved oxygen levels gradually rising with distance. This pattern is likely due to oxygen

demand associated with processes breaking down allochthonous organic material introduced via

the Wash.

LONG TERM DYNAMICS

Development of thermal stratification in Boulder Basin follows a seasonally predictable

pattern. The formation of the thermocline in turn depicts where the Las Vegas Wash inflow

plume is located within the water column. Based upon seasonal temperature data over the past

five years, the main body of Boulder Basin has not completely turned over on a yearly basis

(Fig. 4). The last time we recorded that the lake turned over completely was in 1991. Areas of

the reservoir shallower than 70 m do turnover on annual basis from November through sometime

in January. For example, areas such as LV14 (Fig. 5), where depths are somewhat over 100 ms,

the pattern is similar to that at Hoover Dam. Areas of the Basin, (i.e., in and around LV05 (Fig

6), where the depth is about 20 m, undergo complete mixing.

LOADING

Total nitrogen is considerably higher in the plume of water entering from Las Vegas '

Wash, and is an indication of higher inorganic and organic load of Wash inflow relative to the

main body of Lake Mead (Table 2). Nitrogen concentrations (calculated as ammonia plus nitrate

concentrations) were two to five times higher in the plume than in any other portion of the water

column. Occasionally, levels would approach 10 times that of the adjacent water column.

Concentrations decreased in a consistent manner with distance from the inflow source. At LV14,

nitrogen concentration in the plume were 20-30 percent higher than the surrounding water

column.
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Biological productivity in portions of Boulder Basin is therefore driven by nutrients input

from Las Vegas Wash. Additionally, concentrations of bacteria and unknown soluble organic

compounds are much higher in the plume than in the surrounding water column (Personal

Communication Mr. Alan Simms and Ms. Peggy Roefer, Southern Nevada Water Systems, Las

Vegas; Dr. Kevin Kelly, USBR Environmental Chemistry Research Group, Denver)

Colorado River Inflow

During the months of August and September 1996, a plume of low conductivity water

was present in the metalimnion, just under the thermocline extending across Boulder Basin. It

extended well into Las Vegas Bay (Fig. 3 d-e). This was the Colorado River interflow retaining

its identity through the entire 183 km length of the reservoir (Fig. 7). Momentum to this

interflow was provided by the experimental flood flows from Glen Canyon Dam in late April and

early May. Figure 7 depicts data collected from a longitudinal series of profiles sampled along

the entire reservoir from Grand Wash to Hoover Dam. The river enters Lake Mead as

hypolimnetic interflow in the summer, and depending on conditions, retains much of its integrity.

The Colorado River plume exists as interflow through the entire length of the reservoir in

August. Such an occurrence does not occur yearly, however, it was seen in both 1995 and 1996

(as represented by the two low conductivity centers at 20 to 30 m during summer months Fig. 5),

but not in 1993 or 1994. The magnitude of the interflow from the Colorado River is directly

related to the amount of water entering Lake Mead from upstream (observations USGS inflow

data). Flows in both 1995 and 1996 were near average. Those of the previous four or five years

were below average. We did not note any presence of a Colorado River interflow during those

years.
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Long-term trends for Boulder Basin indicate gradual shifts in water column conductivity

due to the Colorado River. Figure 4 indicates a gradual increase in conductivity in Boulder

Basin from 1991 through 1994. However, beginning in 1995 (Fig. 5), there has been a gradual

decrease in conductivity, likely related to the larger volume of water being input to Lake Mead as

a result of increased inflows. This indicates the dilution effects of the Colorado River inflow on

the total dissolved solid concentration.

In contrast to the Las Vegas Wash plume, water sampled from the Colorado intrusion, as

indicated by lower conductivity (Fig. 3 d,e), tends to contain lower levels of nitrogen then the

surrounding water column.

Summary

Water entering Las Vegas Bay from Las Vegas Wash can be tracked by the high

conductivity signature acquired as a result of saline groundwater inputs prior to its entering Las

Vegas Bay. Water entering Las Vegas Bay exists as underflow, interflow, localized overflow, or

is almost completely disassociated depending on the degree of thermal stratification, and on the

conductivity and temperature of inflowing water (Fig. 3 a-e). Some mixing occurs in the inner

Bay during all seasons of the year as indicated by higher conductivity (Fig. 3 a-e). However, .the

Las Vegas Wash plume retains its identity well into the reservoir. The intrusion of Colorado

River water can also be identified as extending at times well into Boulder Basin.

DISCUSSION

Density Currents - Temperature and Conductance

Investigations of density currents in Lake Mead were first done beginning in June 1937

(Bureau of Reclamation 1941,1947). In 1967, interflow patterns were investigated in Boulder

Basin and reported in Sartoris and Hoffman (1971). More recently, Paulson and Baker (1981),

Prentki and Paulson (1983), and Kimmel et al. (1990) discuss the consequences of interflow,
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including that from the Colorado River, to primary production in Lake Mead. Water entering

Las Vegas Bay from Las Vegas Wash exists as overflow, underflow, and/or interflow depending

on the time of year, climatic conditions, and inflow patterns. The intrusion moves through the

reservoir at a position where it and reservoir water densities are similar. Penetration into the lake

depends on whether or not the flow is sustained or cut off as a result of mixing in the inner Bay,

which is a seasonally dependent phenomena. When flow is cut off, interflow quickly stalls,

completely dispersing or becoming both an underflow and overflow until a new position is

established (Ford 1990). Similar observations can be made for the Colorado River intrusion,

although its effects on Boulder Basin are more dependent upon average annual inflows and

outflows to Lake Mead. Stratification, however, drives the overall pattern in both cases.

The development of stratification involves differences in density, and is influenced both

by temperature and total dissolved solids (correlated to specific conductance). Warmer water is

more stable since there is greater density change in warmer water than in cold. For example, it

takes about 30 times as much energy to completely mix the same volumes of 24 to 25 °C water as

it takes to mix the same volumes of water at 4 to 5°C (Home and Goldman 1994). To indicate

the dominance of thermal structure in defining stratification, consider that at 25 °C it takes

approximately 330 mg-L'1 of TDS concentration to equal the density difference by a 1 °C

temperature change (Ford 1990). However, at temperatures of 10°C or less, concentrations of

less than 30 mg-L'1 effect a similar change. It is therefore the combination of temperature

changes and salinity that depict the location and fate of the Las Vegas Wash plume as it enters

Las Vegas Bay.
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While climate is a factor and does influence the seasonal nature of the Boulder Basin's

ecology, its effects are relatively predictable from season to season (Table 1) and from year to

year. The general pattern from 1990 through 1996 was the following: surface temperatures

ranged from about 14°C in December and early January to over 30 °C in August, a strong

thermocline developed seasonally and ranged in depth from 15 m in early summer to 30 m in late

summer as the epilimnion gained heat, deep hypolimnetic temperatures remained near 12°C year

round, and although the thermocline, in a textbook sense, essentially disappeared each fall, a

gradual temperature gradient remained.

During the coolest time of year, the 2°C difference in water temperature from surface to

bottom, combined with the maximum reservoir depth (150 m), acts to limit complete mixing of

the water column. Therefore, under normal or below normal runoff conditions, complete

turnover of Lake Mead rarely occurs. However, mixing does occur each year for about a two

month period of time to a depth of 60 to 70 m. Thus, only shallower Bays and those portions of

the lake shallower than 60 to 70 m undergo complete mixing. A substantial pool of hypolimnetic

nutrients remains permanently unavailable to epilimnetic production in the main Basin.

As a result of seasonal patterns of stratification, the position of the Las Vegas Wash

intrusion is predictable since it is dependent upon thermal structure of the Basin. During cooler

periods (late November to early January), the thermocline gradually weakens as the lake cools

and the epilimnion mixes to deeper depths. As a result, the intrusion of water extending out from

Las Vegas Wash also exists at deeper depths. By December, the location of the intrusion

deepens to 40 to 60 m, and although its presence may be noted as far from the inflow as LV14

12
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(6 km), the intrusion is relatively unstable and may at times be completely dissipated. January

and February show similar trends. The plume continues to gradually deepen, and it will often

quickly dissipate.

There are several possible explanations for the plume's instability at this time of the year.

Fischer and Smith (1983) described the influence of weather as a factor when they performed dye

injection investigations in late April and early May 1980, and again in mid-August 1980.

Weather continues to play a large role, especially during the late winter and early spring.

Epilimnetic temperatures in the early winter are much cooler (> 3 °C) than the inflowing Wash

water, and may tend to promote a greater degree of epilimnetic mixing, particularly at times of

high sustained winds. Overall, cooler water in the Basin during winter is also less stable because

of the reduced amount of energy needed to mix the water column. Short term disturbances can

mix the water column down to or below the level of the plume in any particular 24-hour period.

From early March until late May, the plume begins to strongly develop again. In March,

the plume has increased up to 20 to 30 m in depth, although not always penetrating far into the

reservoir. In April of the past three years, the plume has been present at a depth of 30 m to at"

least LV14. However, it is unstable, and at times represented by two or more short plumes

extending 2 to 4 km into the Basin. Again shifts in weather patterns likely disrupt flow to the

plume causing it to dissipate and reform. Ford (1990) described this in general for situations

similar to those in Las Vegas Bay. Fischer and Smith (1983) described this occurrence in Las

Vegas Bay during their 1980 investigations. By May, the thermocline has strengthened and

stabilized, and is located at 9 to 15 m in depth depending on weather patterns. From this time, to

sometime after December, the plume is tightly associated with the thermocline, and extends well
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into the Basin. There are, however, occurrences during all months of the year when much of the

flow begins at the Wash confluence as an overflow, with the plunge point occurring as far as 2 to

3 km into the lake due to the greater degree of stratification in the inner Bay.

In June through early September, the lake is strongly stratified, and the thermocline is

located between 15 m (in June) and 30 m (in September). The plume remains intact on the

bottom portion of the epilimnion, immediately above the thermocline. It is tightly constrained

retaining its identity to at least LV12 or LV14. Occasionally we detected elevated conductance

readings at the bottom of the epilimnion (about 30 m in depth) at Hoover Dam demonstrating

that in late summer the plume may be very extensive.

Dissolved Oxygen Concentration

During the period of this study, patterns of dissolved oxygen demonstrated a predictable

pattern. The lowest dissolved oxygen concentrations were measured in the hypolimnion of the

inner portion of the Bay immediately downstream from the Las Vegas Wash confluence. As

stratification intensified, concentrations in the hypolimnion continuously decreased. This

expanded further into the main body of the Basin as summer progressed (Fig. 3a-f). Anoxic

conditions existed below the thermocline from July into October. Development of this pattern is

from the effects of organic load being introduced from Las Vegas Wash, and represents

decomposition of material as it settles out of the plume. The further from the inflow area, the

lighter the load and the higher the dissolved oxygen concentration.

Each summer, an unusually intense metalimnetic oxygen minima was found at sampling

stations LV14 and Hoover Dam. Although a common occurrence in reservoirs, the intensity of

the metalimnetic oxygen minima in Boulder Basin is likely from effects of material (nutrient

14
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loading and increased biological production) brought into the main body of Boulder Basin from

the Wash. Because the plume follows the thermocline, some of this depression results from

biological decomposition processes associated with loading of organic material by the plume,

and the increased standing crop of biological organisms. This is one of many remnants of the

plume that extends well into the reservoir. Even after the plume has seemingly been dispersed as

measured by its conductance signature, evidence for its influence takes other forms. For

example, Burke (1977) reported that zooplankton respiration in the metalimnion accounts for a

substantial portion of this reduction in dissolved oxygen in the metalimnion of Lake Mead.

Zooplankton populations are substantially higher in the inner Bay (Personal Communication,

Dr. John Beaver, Beaver Schaberg and Associates, Shaker Heights, Ohio), and in the

metalimnion (Baker et al. 1977).

Inflow-Outflow Patterns

Shifts in the pattern of inflow and outflow produce significant short and longterm

changes in the water quality of Boulder Basin. Shortterm changes and effects are primarily due

to infrequent flash flood events that occur in Las Vegas Wash or other arroyos. Although not'

studied within the context of this study, these could potentially produce large influxes of organic

material, and have substantial shortterm effects on the extent and composition of the plume. We

have yet to investigate the influence of above normal flows through the reservoir which occur

during the infrequent years of high runoff in the Colorado River watershed.

There are two main outflows to Boulder Basin. The largest outflow is through Hoover

Dam. Normal daily outflows cycle from a low of about 58 m^sec"1 to peaks of 1420 m3-sec''.

The second outflow is through the intake to the Southern Nevada Water Authority (SNWA) with
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a capacity of 1.5 x 106 m3-day"' (Roefer et al. 1996). Both these sources remain relatively

constant from year to year, and longterm changes are effected by shifts in inflow patterns to the

reservoir.

Las Vegas Wash Inflow

Inflow patterns from Las Vegas Wash are predictable and have not changed over the last

20 years. However, volume has increased substantially, doubling in the past ten years. Fischer

and Smith (1983) reported that the plume inner Bay was variable depending upon weather.

Baker et al. (1977) reported the plume was located on the bottom during isothermal conditions,

and in the metalimnion during summer stratification. We found this also to be the case even

though both previous investigations were done when the volume of Wash inflow was half that of

the present. While these other investigations reported that the position of the plume quickly

changed in the water column, our studies found it to be quite predictable, except during late

winter and early spring. The increased flow of the Wash likely forces the interflow to maintain a

more stable position and to extend further into the Basin. Changes in the conductance and

relationship of the density of the Wash inflow to that of the stratified Bay, works together to •

enforce the predictable nature of the plume.

The average flow into the Basin from the Wash 15 years ago was less than 3 m3'sec~'; it

presently exceeds 6 m3'sec"'. As the population continues to increase, so will the inflow. Nevada

receives return flow credits, and the more water returned to Lake Mead, the more can be removed

through municipal intakes. The Wash collects nearly all the non-point source surface runoff

from the watershed along with the treated effluent from three major sewage treatment facilities

located between 10 and 18 km upstream. While inflow once meandered through a series of
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natural wetlands which allowed for natural cooling and natural nutrient removal, it presently

travels in an unimpeded channel from source to the lake due to head cutting which eroded the

channel to its present configuration. Due to the reduced flow time from the treatment facilities,

and to the fact that water is warmed during the tertiary treatment process, inflow from the Wash

enters the lake at a temperature warmer than historically documented. This result tends to force

the plume higher into the water column of the Bay. Mean temperature of the inflow has

increased from about 21°C to 25 °C in the last five years (Roline and Sartoris 1996). The average

specific conductance of this inflow at a flow of about 6 m3-sec'' is about

2,400 uS-crn"1. The dilution of saline ground water by increased effluent input acts to reduce

conductivity, thus, influencing the position of the plume in the water column. This tends to

exacerbate the biological problems (e.g., eutrophication) of the inner Bay. Total dissolved solid

load into the inner Bay, while not increasing in concentration, has increased by nearly 100

percent (1.72 x 10s vs. 3.08 x 108 kg.yr"1) in the past decade because of higher volume input.

While Fischer and Smith (1983) reported that only 10 percent of the nutrients introduced

by the Wash inflow were available for algal production in 1980, increased biological production

(chlorophyll a concentration) in the past year indicates that this percentage may be increasing

due to the changing hydrodynamics. Although nutrient inputs, such as total nitrogen, have

remained relatively constant in the Wash inflow, the higher volume of inflow has resulted in less

dilution. This in turn has resulted in the higher measured chlorophyll a concentrations.
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Colorado River Inflow

The rate and volume of inflow from the Colorado River dictates how far downstream it

directly influences the limnology of Lake Mead. Its influence on the limnology of Boulder Basin

and Lake Mead as a whole can be identified by its lower conductivity signature. During the

summer of 1995 and 1996, metalimnetic interflow existed from the Colorado River confluence to

Hoover Dam (Fig. 7). We and others observed this interflow across the entire Boulder Basin,
t

including the Saddle Island Intake to the Southern Nevada Water System (Personal

Communication, Ms. Peggy Roefer, Southern Nevada Water System). This influence continued

from June through September 1996. Inflows to Lake Mead from the Colorado River (releases

from Glen Canyon Dam, about 400 km upstream) were greater than normal in early 1996. For

seven days, from March 27 through April 3,1996, controlled flooding of the Colorado River in

the Grand Canyon resulted in the streamflow to Lake Mead to be continuously about

1250 m3-sec"1. This influenced the persistence and extent of this intrusion. This particular flow

alone resulted in a nearly 1 m rise in surface elevation of Lake Mead. Flows the rest of the

summer into Lake Mead were mostly below 550 m^sec"1, or slightly below normal, but

somewhat higher than in the previous few years. These data demonstrate that flows of the

magnitude of those that occurred during the controlled flooding, if frequent in occurrence, will

influence the limnology of Lake Mead well into the Boulder Basin. We also observed the

Colorado River interflow in Boulder Basin during a similar time period in 1995, although not

quite as prominent. Flows in 1993 and 1994 were lower, and the Colorado River interflow was

not observed in Boulder Basin.
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Management Significance

"~"~~ There is an abundance of literature documenting the existence of poor water quality due

to the inflow from Las Vegas Wash (Bureau of Reclamation 1965 and 1967, FWPCA 1967 and

1970, PHS 1965, Blackman 1968, Hoffman et al. 1971, Sartoris and Hoffman 1971, Baker et al.

r 1977, EPA 1971a and 1971b, Univ. Ariz. 1971, Everett 1972, Deacon and Tew 1973, Staker et

al. 1974, Deacon 1975, Egdorf 1976, Deacon 1976, Goldman et al. 1976, Tew et al. 1976,

Deacon 1977, Baker et al. 1977, Goldman and Deacon 1978, URS 1979, Prentki et al. 1980,

Baker and Paulson 1980, Brown and Caldwell 1982a and 1982b, Evans and Paulson 1983,

Morris and Paulson 1983, Fischer and Smith 1983, Paulson 1986 and 1987). Investigations of

currents in Boulder Basin of Lake Mead performed in 1967 indicated that "low-quality" water

from Las Vegas Bay might enter the Southern Nevada Water System at Saddle Island (Sartoris

and Hoffman 1971). Various studies of the Basin since that time continue to document the

existence of poor water quality due to inflow from Las Vegas Wash. The most recent

documentation of the effects of poor water quality include Goldstein et al. (1996), LaBounty and

Horn (1996), Roefer et al. (1996), and Bevans et al. (1996).

(- Goldstein et al. (1996) documented 78 cases of cryptosporidiosis occurring in Las Vegas

in early 1994. They concluded that the outbreak was linked to drinking water supply and that it

began and ended very suddenly. Roefer et al. (1996) discussed the outbreak and pointed out that

it is especially disturbing to the water treatment industry that even though the most stringent and

__ reasonable engineering and technical controls are utilized, an outbreak like this can still occur.

Finally, they stated that one of the important components of assessing the potential for an

ri
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outbreak is to examine the water quality and how it is affected by, among other things, the

wastewater treatment plant effluent and storm water runoff from the watershed.

Intakes to the Southern Nevada Water System are located about 40 m below the surface at

Saddle Island about 2 km south of LV14. Data collected from late 1993 and early 1994 indicate

the plume to be especially strong and continuous throughout the period October 1993 through

March 1994. For example, on March 24,1994, the plume was noted to be at least

30 m thick between 30 and 60 m in depth at LV14. The plume was also detected as far away as

Calville Bay (about 12 km from the Wash) at a depth between 25 and 70 m. Thus, although we

have not directly obtained data from the vicinity of the intake, there is good reason to suspect that

at least on some occasions (late November to late March) water from the plume has the potential

to be entrained by the intakes to the Southern Nevada Water System. By late April 1994 the

plume rose to a shallower depth, above the intake zone. In 1995, the plume was not as stable,

extensive, nor continuous as in 1994. However, in spring 1996, the plume was exceptionally

strong past LV14 (Fig. 5). There were 21 documented cases of cryptosporidiosis in Clark

County through September 1996, all in the first two quarters (Clark County Health District

1996).

The fact that we documented exceptionally high nutrient concentrations, and that

Goldstein et al. (1996) documented the case of the water supply being the source of a

cryptosporidiosis outbreak, is only an indication of the reality that a myriad of other inorganic,

organic, and biological contaminants entering Boulder Basin are carried by a predictably

persistent interflow out into the Basin. Bevans et al. (1996) reported the presence in Las Vegas

Bay of organochlorines (pesticides and industrial compounds) and semivolatile industrial

20



compounds in both semipermeable membrane sampling devices and bottom sediment samples.

They found DDT metabolites in bottom sediment samples from all their Las Vegas Bay sampling

sites. They also detected organochlorines (including DDT residues) in carp tissue samples from

Las Vegas Bay along with an indication of endocrine disruption. Concentration of DDT residues

in carp tissue samples from Las Vegas Wash and Bay exceeded some USEPA consumption

limits for fish and they concluded that the source of organochlorines was Las Vegas Wash.

Bevans et al. (1996) provided evidence for endocrine disruption in carp from Las Vegas Bay.

Although, the pathology is distinguishable, the specific organic compound(s) responsible and

their source(s) are unknown. Results of monitoring for bacteria and organic compounds done in

mid-December 1996 revealed to be highest in the plume extending from the Las Vegas Wash

confluence. All these indications point to the fact that the major source of drinking water for the

Las Vegas Valley is at risk when considering the concept of Best Management Practices (BMP)

for future supplies.

It seems wise to be constantly mindful of the limnological features and the

hydrodynamics of the Basin, and to pay very close management attention to the Basin as being

the source of supply. The investment, which should now be obvious, will become increasingly

so as the population of this fast growing region increases, and all of the things that have been

discussed in this paper are exacerbated. As Las Vegas again doubles in size, so will inflows into

Las Vegas Wash. Further, as lake volume changes (i.e., during drought periods), the volume of

Las Vegas Bay is substantially reduced and the interflow may be more prominent. Changes in

reservoir levels may also elevate the plume further away from intake elevations, or move it

closer.
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Table 1.- Seasonal depth of the plume in Boulder Basin, Lake

Mead, Nevada-Arizona, and distance it is extends from the

confluence of Las Vegas Wash based on data collected from 1991

through 1996.

Month

January

February

March

April

May

June

July

August

September

October

November

December

Distance into Basin

6 to 8 km

6 to 8 km

>8km

>5km

<5km

16 km (Hoover Dam)

16 km (Hoover Dam)

8km

8km

8km

8km

8km

Depth

40 to 60 m

40 to 60 m

15 to 40m

15 to 35 m

10 to 15m

10 to 20m (variable)

15 to 30m

15 to 35 m

15 to 35m

15 to 40m

40 to 50 m

40 to 55 m

r
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TaLle 2. - Total Inorganic Nitrogen (mg'L"') From Ammonia and Nitrate Collected During 1996

From Boulder Basin, Lake Mead,Nevada

Date

02/22
03/26
04/23
05/20
06/13
06/27
07/16
08/01
08/14
08/28
09/25
10/17
11/19
12/18

01/18
02/22
03/26
04/23
05/20
06/13
06/27
07/16
08/01
08/14
08/28
09/25
10/17
11/19
12/18

01/18
02/22
03/26
04/23
05/20
06/13
06/27
07/16
08/01
08/14
08/28
09/25
10/17
11/19
12/18

Surface

1
1.8

2.8

5.5

6.8

3.1

1.5

2.6

3.5

3.3

1.6

1.6

1.4

12.2
1.4

•1
0.9

0.6

0.7

2.6

1.3

3.0

1.4

2.0

1.7

1.5

1.4

1.1

1.2
0.7

0.7
I

0.6

0.6

0.6

0.5

0.9

1.6

1.0

0.9

0.9

0.9

0.7

0.5

0.7

0.6

0.6

1 Meter

BQQflH
1.7
2.6

5.8

6.8

3.2

1.5

2.7

3.4

3.1

1.6

1.6
1.5

12.7
14.0

•̂•BflEHI
^^ •̂̂ •̂ ^^^^^^^H

0.8
0.6

0.7

2.7

1.4

3.1

1.4

2.0

1.7

1.4

1.3

1.1

1.1
0.7

0.8
••MHMMV̂ ^H

•̂M^W^^H

0.6
0.6

0.6

0.5

0.8

1.6

1.0

0.9

0.9

0.9

0.7

0.5
0.7

0.5

0.7

3 Meter

9.6
7.9

6.3

5.4

8.1

11.7
6.4

7.5

11.1
2.9

11.0
3.3

13.9
10.8

0.9

0.6

0.6

1.5

1.4

3.1

1.6

2.0

1.6

0.7

1.3

1.0

1.1
0.7

0.7
I

0.6
0.6

0.6

0.6

0.8

1.6

1.0
0.9

0.9

0.7

0.7

0.5

0.7
0.6

0.7

Plume
(Depth)

1
J

'?

.1

f.

•;i

' "f

,*

'3.5(1 8) '|J

, 1,7(19} If

1
1,6(17) it
5.5(15} ,||

S.1(1 1) 1
£W> 1
41(1?) If
5.5(12) .1
8.0(11} M
7J(10)::€
5.8(13) .
3,1(18)
3.1(19)
1.9{19)
2.8(19)

1
2,8(41)
2,4(41)
0.9(31)
1.8(31)
.1.7(11)

*>m
1,4(13) M
1202) m

:[m
t>7(15)fj|
1-8(13)11
Q.9(21jJ|

0.5$9):f|
1.2(40) jjj

zMrnm

Date

01/18
02/22
03/26
04/23
05/20
06/13
06/27
07/16
08/01
08/14
08/28
09/25
10/17
11/19
12/18

01/18
02/22
03/26
04/23
05/20
06/13
06/27
07/16
08/01
08/14
08/28
09/25
10/17
11/19
12/18

03/26
04/23
05/20
06/13
07/16
08/01
08/14
08/28
09/25
10/17
11/19
12/18

Surface

1
0.9
0.7

1.3

3.5

2.5

2.2

1.7

2.1

2.3

1.3

1.6

1.3

1.3
0.9

0.8
I

0.6

0.7

0.6

0.7

1.0

2.4

1.1

1.7

1.3

1.7

1.2

0.9

0.8
0.7

0.7

0.6

0.5

0.8
1.2

0.7

0.8

0.7

0.5

0.4

0.6

0.6
0.6

1 Meter

moon
0.9
0.6

1.3

3.5

2.5

2.4

1.4

2.2

2.3

1.3

1.5

1.3

1.3
0.9

0.8
•̂HRIEIHI

^^^^^^RMI/̂ ^^^^H

0.6
0.6

0.6

0.8

1.0

2.4

1.2

1.8

1.3

1.6

1.2

0.9

0.8
0.7

0.8

^^^^H^^n^^ l̂^̂ •MUÎ Î
0.6
0.5

0.7

1.2

0.7

0.8

0.7

0.5

0.4

0.6

0.6

0.7

3 Meters

0.9

0.7

1.3

2.5

2.6

2.9

1.6

2.1

2.4

1.3

1.6
1.2

1.3

0.8

0.9

0.6

0.7

0.6

0.8

1.0

2.4

1.2

1.7

1.3

1.0

1.2

0.9

0.8
0.7

0.8
I
I

0.6

0.5

0.9

1.2

0.7

0.8

0.7

0.5

0.4

0.6

0.6

0.6

Plume
(Depth)

5,8(14)
1,6(11)
4.2(9
7.0(1 i ,
$.3(1
6,6(6,

&$(11)
&8$)
7.1(8}
7,6(10)
5.5(13)
4.6(14)
3.2(12)
2.4(13)
4.7(14)

f; 3,1(24)
3.3(23)

|l 1,1(25)
M 3.7(21)

1- 3,$(13)
it 4-8(5)

f WD
W &8{1£)
jfe 4,6(11)
* S,5(9)

3.3(15)
$.7(21)
0.8(21)
1 .4(25)
2,8(27}

1,$($1)

0<d{24)
1,1(27)

(
1,2(9)
1.1(5)
1,6(13)
1.1(17)

U(1$)
11C«8
0,̂ 1)
0,8(48)

1' 1̂ 1)

-
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Tame 2. - Total Inorganic Nitrogen (mg«L" ) From Ammonia and Nitrate Collected During 1996

From Boulder Basin, Lake Mead,Nevada

Date

06/27

07/16
08/01
08/14
08/28

09/25

10/17

11/19
12/18

Surface

0.6

0.7

0.7

0.6

0.5

0.4

0.5

0.6

0.5

1 Meter

••MM
0.6

0.7

0.5

0.5
0.4

0.6

0.5

0.5

3 Meter Plume
(Depth)

0.6 1 2(13)
0.7 1,1(17)

0.5 1 1(15)
0.5 08(15)

0.5 08(21)

0.6
0.6 0 9(47)
0.7 1 1(68)

s

•,

Date

01/18

I 02/22

1 03/26

1 04/23

1 05/20

1 06/13
1 06/27

1 07/16
1 08/01
1 08/14
1 08/28

I 09/25

1 10/17
| 11/19
1 12/18

Surface

~1

0.5

0.5

0.5

0.5

0.6

0.5

0.5

0.4

0.4

0.4

0.3

0.5

0.5

0.6

0.5

1 Meter

miWm
0.5
0.5

0.5

0.5

0.4

0.5

0.5

0.5

0.4

0.3

0.5

0.5

0.6

0.6

3 Meters

r~
0.5
0.5
0.5

0.5

0.4

0.4

0.5

0.5

0.3

0.3

0.5
0.6

0.6

0.5

Plume
(Depth)

0,5(50)

0,7(33)

0.7(27)

0,5(13)

oxm

0,4(20)

0,6(20)

0.4(19)

0-8(45)

0!,7(68)
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Figures

Figure 1 .-Map of Lake Mead, a reservoir on the mainstem of the Colorado River, Nevada-
Arizona.

Figure 2.- Isopleth description of specific conductance and turbidity based upon data collected in
the 16 km stretch for Boulder Basin from the confluence with Las Vegas Wash and Hoover Dam
on March 26, 1996.

Figure 3.-Isopleth description of temperature, specific conductance, dissolved oxygen
concentration, and pH values based upon data collected in the 16 km stretch of Boulder Basin
from the confluence with Las Vegas Wash to Hoover Dam.

a. January 18, 1996
b. April 23, 1996
c. June 13, 1996
d. August 28, 1996
e. September 25, 1996
f. November 19, 1996

Figure 4.-Time series isopleth data collected at LV14 (Las Vegas Bay) from August 1993
through November 1996.

Figure 5.-Time series isopleth data collected at LV05 (Las Vegas Bay) from May 1992 through
November 1996.

Figure 6.-Time series isopleth data collected at LV17 (Hoover Dam) from January 1990 through
October 1995.
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Figure 7. -Isopleth description of temperature, specific conductance, dissolved oxygen
concentration, and pH values based upon data collected from Grand Wash to Hoover Dam.
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Tables

Table 1.- Seasonal depth of the plume in Boulder Basin, Lake Mead, Nevada-Arizona, and
distance it extends from the confluence of Las Vegas Wash based on data collected from 1991
through 1996.

Table 2-Total inorganic nitrogen (mg-L"1) from ammonia plus nitrate collected during 1996 from
Boulder Basin, Lake Mead, Nevada.
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Figure 1.- Map of Lake Mead, a reservoir on the mainstem of the Colorado River, Nevada-
Arizona.
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Figure 2.-Isopleth description of specific conductance and turbidity based upon data collected in
the 16 km stretch for Boulder Basin from the confluence with Las Vegas Wash and Hoover Dam
on March 26, 1996.
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Figure 3.-Isopleth description of temperature, specific conductance, dissolved oxygen
concentration, and pH values based upon data collected in the 16 km stretch of Boulder Basin
from the confluence with Las Vegas Wash to Hoover Dam.

a. January 18, 1996
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Figure 3.-Isopleth description of temperature, specific conductance, dissolved oxygen
concentration, and pH values based upon data collected in the 16 km stretch of Boulder Basin
from the confluence with Las Vegas Wash to Hoover Dam.

b. April 23, 1996
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Figure 3.-Isopleth description of temperature, specific conductance, dissolved oxygen
concentration, and pH values based upon data collected in the 16 km stretch of Boulder Basin
from the confluence with Las Vegas Wash to Hoover Dam.

c. June 13, 1996
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Figure 3.-Isopleth description of temperature, specific conductance, dissolved oxygen
concentration, and pH
values based upon data collected in the 16 km stretch of Boulder Basin from the confluence with
Las Vegas Wash to Hoover Dam.

d. August 28, 1996
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Figure 3.-Isopleth description of temperature, specific conductance, dissolved oxygen
concentration, and pH values based upon data collected in the 16 km stretch of Boulder Basin
from the confluence with Las Vegas Wash to Hoover Dam.

e. September 25, 1996
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Figure 3.-Isopleth description of temperature, specific conductance, dissolved oxygen
concentration, and pH values based upon data collected in the 16 km stretch of Boulder Basin
from the confluence with Las Vegas Wash to Hoover Dam.

f. November 19, 1996
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Figure 4\-Time series isopleth data collected at LV14 (Las Vegas Bay) from August 1993
through November 1996.
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w

Figure £.-Time series isopleth data collected at LV05 (Las Vegas Bay) from May 1992 through
November 1996.
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4
Figure jUTime series isopleth data collected at LV17 (Hoover Dam) from January 1990 through
October 1995.
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Figure 7. -Isopleth description of temperature, specific conductance, dissolved oxygen
concentration, and pH values based upon data collected from Grand Wash to Hoover Dam.
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